
scar Documentation

GRyCAP - I3M - UPV

May 22, 2023

Contents:

1 About SCAR 1

2 Approach 3

3 Limitations 5

4 Installation 7
4.1 Install using pip3 . 7
4.2 Clone the Github Repository . 7
4.3 Extra dependencies . 8

5 SCAR container 9
5.1 Building the SCAR image . 9

6 Configuration 11
6.1 IAM User Credentials . 11
6.2 IAM Role . 11
6.3 Configuration file . 12

7 Basic Usage 15
7.1 Using a configuration file (recommended) . 15
7.2 Using CLI configuration (old school) . 16

8 Advanced Usage 17
8.1 Define a shell-script for each invocation of the Lambda function . 17
8.2 Executing an user-defined shell-script . 18
8.3 Passing environment variables . 19
8.4 Executing custom commands and arguments . 20
8.5 Obtaining a JSON Output . 20
8.6 Upload docker image files using an S3 bucket . 20
8.7 Upload ‘slim’ docker image files in the payload . 21
8.8 Setting a specific VPC . 21

9 Using Lambda Image Environment 23
9.1 Use alpine based images . 24
9.2 Use already prepared ECR images . 24
9.3 Do not delete ECR image on function deletion . 25
9.4 ARM64 support . 25

i

9.5 EFS support . 26

10 API Gateway Integration 27
10.1 Define an HTTP endpoint . 27
10.2 CURL Invocation . 28
10.3 GET Request . 28
10.4 POST Request . 29

11 Function Definition Language (SCAR) 33
11.1 Top level parameters . 35
11.2 Functions . 35
11.3 AWS Elements . 36
11.4 Lambda . 36
11.5 Container . 37
11.6 Supervisor . 37
11.7 IAM . 37
11.8 API Gateway . 37
11.9 Cloudwatch . 38
11.10 AWS Batch . 38
11.11 Compute Resources . 39

12 AWS Batch Integration 41
12.1 Set up your configuration file . 41
12.2 Set up your Batch IAM role . 42
12.3 Define a job to be executed in batch . 42
12.4 Combine AWS Lambda and AWS Batch executions . 43
12.5 Limits . 43
12.6 Multinode parallel jobs . 44

13 Event-Driven File-Processing Programming Model 45
13.1 More Event-Driven File-Processing thingies . 46
13.2 Function Definition Language (FDL) . 47

14 Local Testing 49
14.1 Testing of the Docker images via udocker . 49

15 License 51

16 Need Help? 55

ii

CHAPTER 1

About SCAR

SCAR is a framework to transparently execute containers out of Docker images in AWS Lambda, in order to run
applications (see examples for ImageMagick, FFmpeg and AWS CLI, as well as deep learning frameworks such as
Theano and Darknet) and code in virtually any programming language (see examples for Ruby, R, Erlang and Elixir)
on AWS Lambda.

SCAR provides the benefits of AWS Lambda with the execution environment you decide, provided as a Docker image
available in Docker Hub. It is probably the easiest, most convenient approach to run generic applications on AWS
Lambda, as well as code in your favourite programming language, not only in those languages supported by AWS
Lambda.

SCAR also supports a High Throughput Computing Event-Driven File-Processing Programming Model to create
highly-parallel event-driven file-processing serverless applications that execute on customized runtime environments
provided by Docker containers run on AWS Lambda. The development of SCAR has been published in the Future
Generation Computer Systems scientific journal.

SCAR is integrated with API Gateway in order to expose an application via a highly-available HTTP-based REST API
that supports both synchronous and asynchronous invocations. It is also integrated with AWS Batch. This way, AWS
Lambda can be used to acommodate the execution of large bursts of short requests while long-running executions are
delegated to AWS Batch.

SCAR allows to create serverless workflows by combining functions that run on either AWS Batch or AWS Lambda
which produce output files that trigger the execution of functions that, again, run on either AWS Batch or AWS
Lambda, using the very same Docker images, thus effectively creating highly-scalable cross-services serverless work-
flows.

SCAR has been developed by the Grid and High Performance Computing Group (GRyCAP) at the Instituto de Instru-
mentación para Imagen Molecular (I3M) from the Universitat Politècnica de València (UPV).

1

https://github.com/grycap/scar/tree/master/examples/imagemagick
https://github.com/grycap/scar/tree/master/examples/ffmpeg
https://github.com/grycap/scar/tree/master/examples/aws-cli
https://github.com/grycap/scar/tree/master/examples/theano
https://github.com/grycap/scar/tree/master/examples/darknet
https://github.com/grycap/scar/tree/master/examples/ruby
https://github.com/grycap/scar/tree/master/examples/r
https://github.com/grycap/scar/tree/master/examples/erlang
https://github.com/grycap/scar/tree/master/examples/elixir
https://www.journals.elsevier.com/future-generation-computer-systems
https://www.journals.elsevier.com/future-generation-computer-systems
http://www.grycap.upv.es
http://www.i3m.upv.es
http://www.i3m.upv.es
http://www.upv.es

scar Documentation

There is further information on the architecture of SCAR and use cases in the scientific publication “Serverless comput-
ing for container-based architectures” (pre-print available here), included in the Future Generation Computer Systems
journal. Please acknowledge the use of SCAR by referencing the following cite:

A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless computing for
→˓container-based architectures,” Futur. Gener. Comput. Syst., vol. 83, pp. 50-59,
→˓Jun. 2018.

2 Chapter 1. About SCAR

http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://www.grycap.upv.es/gmolto/publications/preprints/Perez2018scc.pdf

CHAPTER 2

Approach

SCAR provides a command-line interface to create a Lambda function to execute a container out of a Docker image
stored in Docker Hub. Each invocation of the Lambda function will result in the execution of such a container
(optionally executing a shell-script inside the container for further versatility).

The following underlying technologies are employed:

• udocker: A tool to execute Docker containers in user space.

– The Fakechroot execution mode of udocker is employed, since Docker containers cannot be natively run
on AWS Lambda. Isolation is provided by the boundary of the Lambda function itself.

• AWS Lambda: A serverless compute service that runs Lambda functions in response to events.

SCAR can optionally define a trigger so that the Lambda function is executed whenever a file is uploaded to an Amazon
S3 bucket. This file is automatically made available to the underlying Docker container run on AWS Lambda so that
an user-provided shell-script can process the file. See the Event-Driven File-Processing Programming Model for more
details.

3

https://hub.docker.com/
https://github.com/indigo-dc/udocker/
https://github.com/dex4er/fakechroot/wiki
https://aws.amazon.com/lambda

scar Documentation

4 Chapter 2. Approach

CHAPTER 3

Limitations

Unfortunately the AWS environment imposes several hard limits that are impossible to bypass:

• The Docker container must fit within the current AWS Lambda limits:

– Compressed + uncompressed Docker image under 512 MB (udocker needs to download the image before
uncompressing it).

– Maximum execution time of 900 seconds (15 minutes).

• Installation of packages in the user-defined script (i.e. using yum, apt-get, etc.) is currently not possible.

5

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

scar Documentation

6 Chapter 3. Limitations

CHAPTER 4

Installation

If you want to avoid installing packages you can launch a docker container with scar installed. Please check the SCAR
container section.

SCAR requires python3, pip3 and a configured AWS credentials file in your system. More info about the AWS
credentials file can be found here.

You have to options when installing SCAR. You can use pip3 or you can clone the GitHub repository and install the
required dependencies.

4.1 Install using pip3

1) Update setuptools to the latest version (or at least to version >= 40.8.0) with:

pip3 install -U setuptools

2) Install SCAR using the PyPI package with the command:

pip3 install scar

This will also creates an script in your local bin folder so you can execute the scar commands directly like:
scar ls

4.2 Clone the Github Repository

1) Clone the GitHub repository:

git clone https://github.com/grycap/scar.git
cd scar

2) Install the Python required dependencies automatically with the command:

7

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

scar Documentation

pip3 install -r requirements.txt

3) Execute the SCAR cli with the command:

python3 scar/scarcli.py ...

3) (Optional) Define an alias for easier usability:

alias scar='python3 `pwd`/scar/scarcli.py'

4.3 Extra dependencies

The last dependencies need to be installed using the package manager of your distribution (apt in this case):

sudo apt -y install zip unzip

8 Chapter 4. Installation

CHAPTER 5

SCAR container

Other option to use SCAR is to create the container with the binaries included or to use the already available image
with the packaged binaries installed from grycap/scar. Either you want to build the images from scratch or you want
to use the already available image you will need Docker installed in your machine.

5.1 Building the SCAR image

All the steps needed to build the SCAR image are defined in the Dockerfile available at the root of the project. You
only need to execute:

docker build -t scar -f Dockerfile .

This command creates a scar image in your docker repository that can be launched as:

docker run -it -v $AWS_CREDENTIALS_FOLDER:/home/scar/.aws -v $SCAR_CONFIG_FOLDER:/
→˓home/scar/.scar scar

With the previous command we tell Docker to mount the folders required by SCAR (~/.aws and ~/.scar) in the paths
expected by the binary. Launching the container with the command described above also allow us to have different
configuration folders wherever we want in our host machine.

Once we are inside the container you can execute SCAR like another system binary:

scar init -n scar-cowsay -i grycap/cowsay

scar run -n scar-cowsay

Request Id: 91e8afb6-8f19-11e8-9167-bd8a0b8b0f78
Log Group Name: /aws/lambda/scar-cowsay
Log Stream Name: 2018/07/24/[$LATEST]08444e77d6a14b09a47de0d5e4af5fa8

< Quick!! Act as if nothing has happened! >

(continues on next page)

9

https://hub.docker.com/r/grycap/scar/
https://www.docker.com/community-edition#/download
https://github.com/grycap/scar/blob/master/Dockerfile

scar Documentation

(continued from previous page)

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

scar ls

NAME MEMORY TIME IMAGE_ID API_URL
----------- -------- ------ ------------- ---------
scar-cowsay 512 300 grycap/cowsay -

scar rm -n scar-cowsay

10 Chapter 5. SCAR container

CHAPTER 6

Configuration

To use SCAR with AWS you need:

• Valid AWS IAM user credentials (Access Key and Secret Key ID) with permissions to deploy Lambda functions.

• An IAM Role for the Lambda function to be authorized to access other AWS services during its execution.

6.1 IAM User Credentials

The credentials have to be configured in your $HOME/.aws/credentials file (as when using AWS CLI). Check
the AWS CLI documentation, specially section ‘Configuration and Credential Files’.

6.2 IAM Role

The Lambda functions require an IAM Role in order to acquire the required permissions to access the different AWS
services during its execution.

The following policy can be used in the IAM Role:

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [

"logs:*"
],
"Resource": "arn:aws:logs:*:*:*"

},
{

"Effect": "Allow",
"Action": [

(continues on next page)

11

https://aws.amazon.com/iam/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

scar Documentation

(continued from previous page)

"s3:GetObject",
"s3:PutObject"

],
"Resource": "arn:aws:s3:::*"

}
]

}

This IAM Role should be created beforehand. There is further documentation on this topic in the ‘Creating IAM roles’
section of the AWS documentation.

6.3 Configuration file

The first time you execute SCAR a default configuration file is created in the user location: $HOME/.scar/scar.
cfg. As explained above, it is mandatory to set a value for the aws.iam.role property to use the Lambda service.
If you also want to use the Batch service you have to update the values of the aws.batch.compute_resources.
security_group_ids, and aws.batch.compute_resources.subnets. There is more information
about the Batch usage here. Additionally, an explanation of all the configurable properties can be found in the ex-
ample configuration file. Below is the complete default configuration file

{
"scar": {
"config_version": "1.0.9"

},
"aws": {
"iam": {

"boto_profile": "default",
"role": ""

},
"lambda": {

"boto_profile": "default",
"region": "us-east-1",
"execution_mode": "lambda",
"timeout": 300,
"memory": 512,
"description": "Automatically generated lambda function",
"runtime": "python3.7",
"layers": [],
"invocation_type": "RequestResponse",
"asynchronous": false,
"log_type": "Tail",
"log_level": "INFO",
"environment": {

"Variables": {
"UDOCKER_BIN": "/opt/udocker/bin/",
"UDOCKER_LIB": "/opt/udocker/lib/",
"UDOCKER_DIR": "/tmp/shared/udocker",
"UDOCKER_EXEC": "/opt/udocker/udocker.py"

}
},
"deployment": {

"max_payload_size": 52428800,
"max_s3_payload_size": 262144000

},

(continues on next page)

12 Chapter 6. Configuration

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://scar.readthedocs.io/en/latest/batch.html
https://github.com/grycap/scar/blob/master/fdl-example.yaml
https://github.com/grycap/scar/blob/master/fdl-example.yaml

scar Documentation

(continued from previous page)

"container": {
"environment": {
"Variables": {}

},
"timeout_threshold": 10

},
"supervisor": {

"version": "1.2.0-rc4",
"layer_name": "faas-supervisor",
"license_info": "Apache 2.0"

}
},
"s3": {

"boto_profile": "default",
"region": "us-east-1",
"event": {

"Records": [
{
"eventSource": "aws:s3",
"s3": {
"bucket": {
"name": "{bucket_name}",
"arn": "arn:aws:s3:::{bucket_name}"

},
"object": {
"key": "{file_key}"

}
}

}
]

}
},
"api_gateway": {

"boto_profile": "default",
"region": "us-east-1",
"endpoint": "https://{api_id}.execute-api.{api_region}.amazonaws.com/{stage_

→˓name}/launch",
"request_parameters": {

"integration.request.header.X-Amz-Invocation-Type": "method.request.header.X-
→˓Amz-Invocation-Type"

},
"http_method": "ANY",
"method": {

"authorizationType": "NONE",
"requestParameters": {
"method.request.header.X-Amz-Invocation-Type": false

}
},
"integration": {

"type": "AWS_PROXY",
"integrationHttpMethod": "POST",
"uri": "arn:aws:apigateway:{api_region}:lambda:path/2015-03-31/functions/

→˓arn:aws:lambda:{lambda_region}:{account_id}:function:{function_name}/invocations",
"requestParameters": {
"integration.request.header.X-Amz-Invocation-Type": "method.request.header.

→˓X-Amz-Invocation-Type"
}

(continues on next page)

6.3. Configuration file 13

scar Documentation

(continued from previous page)

},
"path_part": "{proxy+}",
"stage_name": "scar",
"service_id": "apigateway.amazonaws.com",
"source_arn_testing": "arn:aws:execute-api:{api_region}:{account_id}:{api_id}/*

→˓",
"source_arn_invocation": "arn:aws:execute-api:{api_region}:{account_id}:{api_id}

→˓/{stage_name}/ANY"
},
"cloudwatch": {

"boto_profile": "default",
"region": "us-east-1",
"log_retention_policy_in_days": 30

},
"batch": {

"boto_profile": "default",
"region": "us-east-1",
"vcpus": 1,
"memory": 1024,
"enable_gpu": false,
"state": "ENABLED",
"type": "MANAGED",
"environment": {

"Variables": {}
},
"compute_resources": {

"security_group_ids": [],
"type": "EC2",
"desired_v_cpus": 0,
"min_v_cpus": 0,
"max_v_cpus": 2,
"subnets": [],
"instance_types": [
"m3.medium"

],
"launch_template_name": "faas-supervisor",
"instance_role": "arn:aws:iam::{account_id}:instance-profile/ecsInstanceRole"

},
"service_role": "arn:aws:iam::{account_id}:role/service-role/AWSBatchServiceRole

→˓"
}

}
}

14 Chapter 6. Configuration

CHAPTER 7

Basic Usage

7.1 Using a configuration file (recommended)

1) The most basic configuration file needed to launch a function is:

cat >> basic-cow.yaml << EOF
functions:
aws:
- lambda:

name: scar-cowsay
container:
image: grycap/cowsay

EOF

Where you define the name of the function and under it the image that will run inside the function.

2) Once you have created the file then you can create the function with:

scar init -f basic-cow.yaml

3) To execute the function the command is:

scar run -f basic-cow.yaml

4) Checking the function logs is as easy as:

scar log -f basic-cow.yaml

5) Finally to delete the function:

scar rm -f basic-cow.yaml

A role must be specified with the flag -r. It must be the ARN code of the role. To find it, search IAM, the Identity and
Access Management of AWS. Press the Role tab. Search and select the role name. That will have an structure similar
to this arn:aws:iam::{code}:role/{name_of_the_role}

15

scar Documentation

7.2 Using CLI configuration (old school)

1) Create a Lambda function to execute a container (out of a Docker image that is stored in Docker Hub).

In these examples the grycap/cowsay Docker image in Docker Hub will be employed:

scar init -n scar-cowsay -i grycap/cowsay

Notice that the memory and time limits for the Lambda function can be specified in the command-line.
Upon first execution, the file $HOME/.scar/scar.cfg is created with default values for the memory
and timeout, among other features. The command-line values always take precedence over the values in
the configuration file. The default values are 512 MB for the memory and 300 seconds for the timeout.

Further information about the command-line arguments is available in the CLI help:

scar --help

2) Execute the Lambda function:

scar run -n scar-cowsay

The first invocation to the Lambda function will pull the Docker image from DockerHub so it will take
considerably longer than the subsequent invocations, which will most certainly reuse the existing cached
Docker image.

3) Access the logs

The logs are stored in CloudWatch with a default retention policy of 30 days (as default). The following
command retrieves all the logs related to the Lambda function:

scar log -n scar-cowsay

If you only want the logs related to a log-stream-name you can use:

scar log -n scar-cowsay -ls 'log-stream-name'

And finally if you know the request id generated by your invocation, you can specify it to get the logs
related:

scar log -n scar-cowsay -ri request-id

You can also specify the log stream name to retrieve the values related with the request id, usually this
will be faster if the function has generated a lot of log output:

scar log -n scar-cowsay -ls 'log-stream-name' -ri request-id

All values are shown in the output when executing scar log. Do not forget to use the single quotes, as
indicated in the example, to avoid unwanted shell expansions.

4) Remove the Lambda function

You can remove the Lambda function together with the logs generated in CloudWatch by:

scar rm -n scar-cowsay

16 Chapter 7. Basic Usage

https://hub.docker.com/r/grycap/cowsay/

CHAPTER 8

Advanced Usage

8.1 Define a shell-script for each invocation of the Lambda function

Instead of packaging the script to be used inside the container image and having to modify the image each time you
want to modify the script, you can specify a shell-script when initializing the Lambda function to trigger its execution
inside the container on each invocation of the Lambda function. For example:

cat >> cow.sh << EOF
#!/bin/bash
/usr/games/cowsay "Executing init script !!"
EOF

cat >> cow.yaml << EOF
functions:

aws:
- lambda:

name: scar-cowsay
init_script: cow.sh
container:

image: grycap/cowsay
EOF

scar init -f cow.yaml

or using CLI parameters:

scar init -s cow.sh -n scar-cowsay -i grycap/cowsay

Now whenever this Lambda function is executed, the script will be run in the container:

scar run -f cow.yaml

Request Id: fb925bfa-bc65-47d5-beed-077f0de471e2
Log Group Name: /aws/lambda/scar-cowsay

(continues on next page)

17

scar Documentation

(continued from previous page)

Log Stream Name: 2019/12/19/[$LATEST]0eb088e8a18d4599a572b7bf9f0ed321

< Executing init script !! >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

As explained in next section, this can be overridden by speciying a different shell-script when running the Lambda
function.

8.2 Executing an user-defined shell-script

You can execute the Lambda function and specify a shell-script locally available in your machine to be executed within
the container:

cat >> runcow.sh << EOF
#!/bin/bash
/usr/games/cowsay "Executing run script !!"
EOF

cat >> cow.yaml << EOF
functions:

aws:
- lambda:

name: scar-cowsay
run_script: runcow.sh
container:

image: grycap/cowsay
EOF

scar init -f cow.yaml

Now if you execute the function without passing more parameters, the entrypoint of the container is executed:

scar run -n scar-cowsay

Request Id: 97492a12-ca84-4539-be80-45696501ee4a
Log Group Name: /aws/lambda/scar-cowsay
Log Stream Name: 2019/12/19/[$LATEST]d5cc7a9db9b44e529873130f6d005fe1

/ No matter where I go, the place is \
\ always called "here". /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

But, when you use the configuration file with the run_script property:

18 Chapter 8. Advanced Usage

scar Documentation

scar run -f cow.yaml

or use CLI parameters:

scar run -n scar-cowsay -s runcow.sh

or a combination of both (to avoid editing the initial .yaml file):

scar run -f cow.yaml -s runcow.sh

the passed script is executed:

Request Id: db3ff40e-ab51-4f90-95ad-7473751fb9c7
Log Group Name: /aws/lambda/scar-cowsay
Log Stream Name: 2019/12/19/[$LATEST]d5cc7a9db9b44e529873130f6d005fe1

< Executing run script !! >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Have in mind that the script used in combination with the run command is no saved anywhere. It is uploaded and
executed inside the container, but the container image is not updated. The shell-script needs to be specified and can be
changed in each different execution of the Lambda function.

8.3 Passing environment variables

You can specify environment variables to the init command which will be in turn passed to the executed Docker
container and made available to your shell-script. Using a configuration file:

cat >> cow.sh << EOF
#!/bin/bash
env | /usr/games/cowsay
EOF

cat >> cow-env.yaml << EOF
functions:

aws:
- lambda:

name: scar-cowsay
run_script: runcow.sh
container:

image: grycap/cowsay
environment:
Variables:

TESTKEY1: val1
TESTKEY2: val2

EOF

scar init -f cow-env.yaml

or using CLI parameters:

8.3. Passing environment variables 19

scar Documentation

scar init -n scar-cowsay -i grycap/cowsay -e TEST1=45 -e TEST2=69 -s cow.sh

8.4 Executing custom commands and arguments

To run commands inside the docker image you can specify the command to be executed at the end of the command
line. This command overrides any init or run script defined:

scar run -f cow.yaml df -h

Request Id: 39e6fc0d-6831-48d4-aa03-8614307cf8b7
Log Group Name: /aws/lambda/scar-cowsay
Log Stream Name: 2019/12/19/[$LATEST]9764af5bf6854244a1c9469d8cb84484
Filesystem Size Used Avail Use% Mounted on
/dev/root 526M 206M 309M 41% /
/dev/vdb 1.5G 21M 1.4G 2% /dev

8.5 Obtaining a JSON Output

For easier scripting, a JSON output can be obtained by including the -j or the -v (even more verbose output) flags:

scar run -f cow.yaml -j

{ "LambdaOutput":
{
"StatusCode": 200,
"Payload": " ___\n/ \"I always avoid

→˓prophesying beforehand \\\n| because it is much better |\n|
→˓ |\n| to prophesy after the event has already |\n|
→˓taken place. \" - Winston |\n|
→˓ |\n\\ Churchill /\n --------------------------------
→˓---------\n \\ ^__^\n \\ (oo)_______\n (__)\\
→˓)\\/\\\n ||----w |\n || ||\n",

"LogGroupName": "/aws/lambda/scar-cowsay",
"LogStreamName": "2019/12/19/[$LATEST]a4ba02914fd14ab4825d6c6635a1dfd6",
"RequestId": "fcc4e24c-1fe3-4ca9-9f00-b15ec18c1676"

}
}

8.6 Upload docker image files using an S3 bucket

SCAR allows to upload a saved docker image. We created the image file with the command docker save
grycap/cowsay > cowsay.tar.gz. In case the docker is not in localhost pull it with the command docker
pull grycap/cowsay:

cat >> cow.yaml << EOF
functions:

aws:
- lambda:

name: scar-cowsay

(continues on next page)

20 Chapter 8. Advanced Usage

scar Documentation

(continued from previous page)

container:
image_file: cowsay.tar.gz

deployment:
bucket: scar-test

EOF

scar init -f cow.yaml

or for the CLI fans:

scar init -db scar-cowsay -n scar-cowsay -if cowsay.tar.gz

Have in mind that the maximum deployment package size allowed by AWS is an unzipped file of 250MB. The image
file is unpacked in a temporal folder and the udocker layers are created. Depending on the size of the layers, SCAR
will try to upload them or will show the user an error.

8.7 Upload ‘slim’ docker image files in the payload

Finally, if the image is small enough, SCAR allows to upload it in the function payload wich is ~50MB ‘‘ docker save
grycap/minicow > minicow.tar.gz‘‘ in case:

cat >> minicow.yaml << EOF
functions:

aws:
- lambda:

name: scar-cowsay
container:

image_file: minicow.tar.gz
EOF

scar init -f minicow.yaml

To help with the creation of slim images, you can use minicon. Minicon is a general tool to analyze applications and
executions of these applications to obtain a filesystem that contains all the dependencies that have been detected. By
using minicon the size of the cowsay image was reduced from 170MB to 11MB.

8.8 Setting a specific VPC

You can also set an specific VPC parameters to configure the network in you lambda functions. You only have to add
the vpc field setting the subnets and security groups as shown in the following example:

functions:
aws:
- lambda:

vpc:
SubnetIds:
- subnet-00000000000000000

SecurityGroupIds:
- sg-00000000000000000

name: scar-cowsay
container:

image: grycap/cowsay

8.7. Upload ‘slim’ docker image files in the payload 21

https://github.com/grycap/minicon

scar Documentation

22 Chapter 8. Advanced Usage

CHAPTER 9

Using Lambda Image Environment

Scar uses by default the python3.7 Lambda environment using udocker program to execute the containers. In 2021
AWS added native support to ECR container images. Scar also supports to use this environment to execute your
containers.

This functionality requires docker to be installed (check installation documentation here).

To use it you only have to set to image the lamda runtime property setting. You can set it in the scar configuration
file:

{
"aws": {
"lambda": {

"runtime": "image"
}

}
}

Or in the function definition file:

functions:
aws:
- lambda:

runtime: image
name: scar-function
memory: 2048
init_script: script.sh
container:

image: image/name

Or event set it as a parameter in the init scar call:

scar init -f function_def.yaml -rt image

In this case the scar client will prepare the image and upload it to AWS ECR as required by the Lambda Image
Environment.

23

https://docs.docker.com/engine/install/

scar Documentation

To use this functionality you should use supervisor version 1.5.0 or newer.

Using the image runtime the scar client will build a new container image adding the supervisor and other needed files
to the user provided image. This image will be then uploaded to an ECR registry to enable Lambda environment to
create the function. So the user that executes the scar client must have the ability to execute the docker commands (be
part of the docker group, see docker documentation)

9.1 Use alpine based images

Using the container image environment there is no limitation to use alpine based images (musl based). You only have
to add the alpine flag in the function definition:

functions:
aws:
- lambda:

runtime: image
name: scar-function
memory: 2048
init_script: script.sh
container:

image: image/name
alpine: true

If you use an alpine based image and you do not set the alpine flag you will get an execution Error:

Error: fork/exec /var/task/supervisor: no such file or directory

9.2 Use already prepared ECR images

You can also use a previously prepared ECR image instead of building it and and pushing to ECR. In this case you
have to specify the full ECR image name and add set to false the create_image flag in the function definition:

functions:
aws:
- lambda:

runtime: image
name: scar-function
memory: 2048
init_script: script.sh
container:

image: 000000000000.dkr.ecr.us-east-1.amazonaws.com/scar-function
create_image: false

But this ECR image must have been prepared to work with scar. So it must have the init_script and the
supervisor installed and set it as the CMD of the docker image. You can use this example to create your own
Dockefile:

from your_repo/your_image

Create a base dir
ARG FUNCTION_DIR="/var/task"
WORKDIR ${FUNCTION_DIR}
Set workdir in the path

(continues on next page)

24 Chapter 9. Using Lambda Image Environment

https://github.com/grycap/faas-supervisor
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

scar Documentation

(continued from previous page)

ENV PATH="${FUNCTION_DIR}:${PATH}"
Add PYTHONIOENCODING to avoid UnicodeEncodeError as sugested in:
https://github.com/aws/aws-lambda-python-runtime-interface-client/issues/19
ENV PYTHONIOENCODING="utf8"

Copy your script, similar to:
https://github.com/grycap/scar/blob/master/examples/darknet/yolo.sh
COPY script.sh ${FUNCTION_DIR}
Download the supervisor binary
https://github.com/grycap/faas-supervisor/releases/latest
Copy the supervisor
COPY supervisor ${FUNCTION_DIR}
Set it as the CMD
CMD ["supervisor"]

9.3 Do not delete ECR image on function deletion

By default the scar client deletes the ECR image in the function deletion process. If you want to maintain it for future
functions you can modify the scar configuration file and set to false delete_image flag in the ecr configuration
section:

{
"aws": {
"ecr": {

"delete_image": false
}

}
}

Or set it in the function definition:

functions:
aws:
- lambda:

runtime: image
name: scar-function
memory: 2048
init_script: script.sh
container:

image: image/name
ecr:

delete_image: false

9.4 ARM64 support

Using the container image environment you can also specify the architecture to execute your lambda function (x86_64
or arm64) setting the architectures field in the function definition. If not set the default architecture will be used
(x86_64):

functions:
aws:

(continues on next page)

9.3. Do not delete ECR image on function deletion 25

scar Documentation

(continued from previous page)

- lambda:
runtime: image
architectures:

- arm64
name: scar-function
memory: 2048
init_script: script.sh
container:

image: image/name

9.5 EFS support

Using the container image environment you can also configure file system access for your Lambda function. First you
have to set the VPC parameters to use the same subnet where the EFS is deployed. Also verify that the iam role set in
the scar configuration has the correct permissions and the Security Groups is properly configured to enable access to
NFS port (see Configuring file system access for Lambda functions). Then you have to add the file_system field
setting the arns and mount paths of the file systems to mount as shown in the following example:

functions:
aws:
- lambda:

runtime: image
vpc:

SubnetIds:
- subnet-00000000000000000

SecurityGroupIds:
- sg-00000000000000000

file_system:
- Arn: arn:aws:elasticfilesystem:us-east-1:000000000000:access-point/fsap-

→˓00000000000000000
LocalMountPath: /mnt/efs

name: scar-function
memory: 2048
init_script: script.sh
container:

image: image/name

26 Chapter 9. Using Lambda Image Environment

https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html

CHAPTER 10

API Gateway Integration

10.1 Define an HTTP endpoint

SCAR allows to transparently integrate an HTTP endpoint with a Lambda function via API Gateway. To enable this
functionality you only need to define an API name and SCAR will take care of the integration process (before using
this feature make sure you have to correct rights set in your aws account).

The following configuration file creates a generic api endpoint that redirects the http petitions to your lambda function:

cat >> api-cow.yaml << EOF
functions:

aws:
- lambda:

name: scar-api-cow
container:

image: grycap/cowsay
api_gateway:

name: api-cow
EOF

scar init -f api-cow.yaml

After the function is created you can check the API URL with the command:

scar ls

That shows the basic function properties:

NAME MEMORY TIME IMAGE_ID API_URL
→˓ SUPERVISOR_VERSION
---------------- -------- ------ ------------------ ------------------------------
→˓------------------------------------ --------------------
scar-api-cow 512 300 grycap/cowsay https://r20bwcmdf9.execute-
→˓api.us-east-1.amazonaws.com/scar/launch 1.2.0

27

scar Documentation

10.2 CURL Invocation

You can directly invoke the API Gateway endpoint with curl to obtain the output generated by the application:

curl -s https://r20bwcmdf9.execute-api.us-east-1.amazonaws.com/scar/launch | base64 --
→˓decode

__
/ Hildebrant's Principle: \
| |
| If you don't know where you are going, |
\ any road will get you there. /
--

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

This way, you can easily provide an HTTP-based endpoint to trigger the execution of an application.

10.3 GET Request

SCAR also allows you to make an HTTP request, for that you can use the command invoke like this:

scar invoke -f api-cow.yaml

Request Id: e8cba9ee-5a60-4ff2-9e52-475e5fceb165
Log Group Name: /aws/lambda/scar-api-cow
Log Stream Name: 2019/12/20/[$LATEST]8aa8bdecba0647edae61e2e45e99ff90

/ What if everything is an illusion and \
| nothing exists? In that case, I |
| definitely overpaid for my carpet. |
| |
\ -- Woody Allen, "Without Feathers" /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

This command automatically creates a GET request and passes the petition to the API endpoint defined previously.
Bear in mind that the timeout for the API Gateway requests is 29s. Therefore, if the function takes more time to
respond, the API will return an error message. To launch asynchronous functions you only need to add the -a
parameter to the call:

scar invoke -f api-cow.yaml -a

Function 'scar-api-cow' launched successfully.

When you invoke an asynchronous function through the API Gateway there is no way to know if the function finishes
successfully until you check the function invocation logs.

28 Chapter 10. API Gateway Integration

scar Documentation

10.4 POST Request

You can also pass files through the HTTP endpoint. For the next example we will pass an image to an image transfor-
mation system. The following files were user to define the service:

cat >> grayify-image.sh << EOF
#! /bin/sh
FILE_NAME=`basename $INPUT_FILE_PATH`
OUTPUT_FILE=$TMP_OUTPUT_DIR/$FILE_NAME
convert $INPUT_FILE_PATH -type Grayscale $OUTPUT_FILE
EOF

cat >> image-parser.yaml << EOF
functions:

aws:
- lambda:

name: scar-imagemagick
init_script: grayify-image.sh
container:

image: grycap/imagemagick
output:
- storage_provider: s3

path: scar-imagemagick/output
api_gateway:

name: image-api
EOF

scar init -f image-parser.yaml

We are going to convert this image.

10.4. POST Request 29

https://raw.githubusercontent.com/grycap/scar/master/examples/imagemagick/homer.png

scar Documentation

To launch the service through the api endpoint you can use the following command:

scar invoke -f image-parser.yaml -db homer.png

The file specified after the parameter -db is codified and passed as the POST body. The output generated will be stored
in the output bucket specified in the configuration file. Take into account that the file limitations for request response
and asynchronous requests are 6MB and 128KB respectively, as specified in the AWS Lambda documentation.

The last option available is to store the output wihtout bucket intervention. What we are going to do is pass the
generated files to the output of the function and then store them in our machine. For that we need to slightly modify
the script and the configuration file:

cat >> grayify-image.sh << EOF
#! /bin/sh
FILE_NAME=`basename $INPUT_FILE_PATH`
OUTPUT_FILE=$TMP_OUTPUT_DIR/$FILE_NAME
convert $INPUT_FILE_PATH -type Grayscale $OUTPUT_FILE
cat $OUTPUT_FILE
EOF

cat >> image-parser.yaml << EOF
functions:

aws:

(continues on next page)

30 Chapter 10. API Gateway Integration

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

scar Documentation

(continued from previous page)

- lambda:
name: scar-imagemagick
init_script: grayify-image.sh
container:

image: grycap/imagemagick
api_gateway:

name: image-api
EOF

scar init -f image-parser.yaml

This can be achieved with the command:

scar invoke -f image-parser.yaml -db homer.png -o grey_homer.png

10.4. POST Request 31

scar Documentation

32 Chapter 10. API Gateway Integration

CHAPTER 11

Function Definition Language (SCAR)

Example:

functions:
aws:
- lambda:

boto_profile: default
region: us-east-1
name: function1
memory: 1024
timeout: 300
execution_mode: lambda
log_level: INFO
layers:
- arn:....
environment:

Variables:
KEY1: val1
KEY2: val2

init_script: ffmpeg-script.sh
container:

image: jrottenberg/ffmpeg:4.1-ubuntu
timeout_threshold": 10
environment:
Variables:

KEY1: val1
KEY2: val2

input:
- storage_provider: minio.my_minio

path: my-bucket/test
output:
- storage_provider: s3.my_s3

path: my-bucket/test-output
suffix:
- wav

(continues on next page)

33

scar Documentation

(continued from previous page)

- srt
prefix:
- result-

supervisor:
version: latest

iam:
boto_profile: default
role: ""

api_gateway:
boto_profile: default
region: us-east-1

cloudwatch:
boto_profile: default
region: us-east-1
log_retention_policy_in_days: 30

batch:
boto_profile: default
region: us-east-1
vcpus: 1
memory: 1024
enable_gpu: False
service_role: "arn:..."
environment:

Variables:
KEY1: val1
KEY2: val2

compute_resources:
security_group_ids:
- sg-12345678
desired_v_cpus: 0
min_v_cpus: 0
max_v_cpus: 2
subnets:
- subnet-12345
subnet-67891

instance_types:
- "m3.medium"
instance_role: "arn:..."

oscar:
- my_oscar:

name: service1
memory: 1Gi
cpu: '1.0'
log_level: INFO
image: grycap/darknet
script: my-script.sh
environment:

Variables:
KEY1: val1
KEY2: val2

input:
- storage_provider: minio.my_minio

path: my-bucket/test
output:
- storage_provider: s3.my_s3

(continues on next page)

34 Chapter 11. Function Definition Language (SCAR)

scar Documentation

(continued from previous page)

path: my-bucket/test-output
suffix:
- wav
- srt

prefix:
- result-

storage_providers:
s3:
my_s3:

access_key: awsuser
secret_key: awskey
region: us-east-1

minio:
my_minio:

endpoint: minio-endpoint
verify: True
region: us-east-1
access_key: muser
secret_key: mpass

onedata:
my_onedata:

oneprovider_host: op-host
token: mytoken
space: onedata_space

11.1 Top level parameters

Field Description
functions
Functions.

Map to define the credentials for a MinIO storage provider, being the key the user-defined
identifier for the provider

storage_providers
OSCAR-FDL-
StorageProvider

Parameter to define the credentials for the storage providers to be used in the services, in
lambda function only s3 buckets are allowed.

11.2 Functions

Field Description
AWS Elements
Lambda

Parameters to define manage AWS resources

oscar
OSCAR-FDL

Parameters to define OSCAR services

11.1. Top level parameters 35

https://docs.oscar.grycap.net/fdl/#storageproviders
https://docs.oscar.grycap.net/fdl/#storageproviders
https://docs.oscar.grycap.net/fdl/

scar Documentation

11.3 AWS Elements

Field Description
Lambda
Lambda

Set Lambda properties.

iam
IAM

Set IAM properties.

api_gateway
API Gateway

Set API Gateway properties.

cloudwatch
Cloudwatch

Set CloudWatch properties.

batch
AWS Batch

Set AWS Batch properties.

11.4 Lambda

Field Description
boto_profile
string

Boto profile used for the lambda client. Default ‘default’.Must match the profiles in the
file ~/.aws/credentials

region
string

Region of the function, can be any region supported by AWS.

name
string

Function’s name. REQUIRED

memory
string

Memory of the function, in MB, min 128, max 3008. Default ‘512’

timeout
string

Maximum execution time in seconds, max 900. Default ‘300’

execution_mode
string

Set job delegation or not. Possible values ‘lambda’, ‘lambda-batch’, ‘batch’. Default
‘lambda’.

log_level
string

Supervisor log level. Can be INFO, DEBUG, ERROR, WARNING. Default ‘INFO’

layers
string array

Lambda function’s layers arn (max 4). SCAR adds the supervisor layer automatically.

environment
OSCAR-FDL-
Enviroment

Environment variables of the function. This variables are used in the lambda’s environ-
ment, not the container’s environment.

init_script
string

Script executed inside of the function’s container.

container
Container

Define udocker container properties

input
OSCAR-FDL-
StorageIOConfig

Define input storage providers linked with the function.

output
OSCAR-FDL-
StorageIOConfig

Define input storage providers linked with the function.

supervisor
Supervisor

Properties for the faas-supervisor used in the inside the lambda function

36 Chapter 11. Function Definition Language (SCAR)

https://docs.oscar.grycap.net/fdl/#envvarsmap
https://docs.oscar.grycap.net/fdl/#envvarsmap
https://docs.oscar.grycap.net/fdl/#storageioconfig
https://docs.oscar.grycap.net/fdl/#storageioconfig
https://docs.oscar.grycap.net/fdl/#storageioconfig
https://docs.oscar.grycap.net/fdl/#storageioconfig

scar Documentation

11.5 Container

Field Description
image
string

Container image to use. REQUIRED

timeout_threshold
string

Time used to post-process data generated by the container. This time is substracted from the total
time set for the function. If there are a lot of files to upload as output, maybe this value has to be
increased. Default ‘10’ seconds.

environment
OSCAR-
FDL-
Enviroment

Environment variables of the container. These variables are passed to the container environment,
that is, can be accessed from the user’s script.

11.6 Supervisor

Field Description
version
string

Must be a Github tag or “latest”. Default ‘latest’.

11.7 IAM

Field Description
boto_profile
string

Boto profile used for the iam client.

role
string

The Amazon Resource Name (ARN) of the function’s execution role. This value is usually set for all
the functions in the SCAR’s default configuration file. REQUIRED

11.8 API Gateway

Field Description
boto_profile
string

Boto profile used for the iam client.

region
string

Region of the function, can be any region supported by AWS.

11.5. Container 37

https://docs.oscar.grycap.net/fdl/#envvarsmap
https://docs.oscar.grycap.net/fdl/#envvarsmap
https://docs.oscar.grycap.net/fdl/#envvarsmap

scar Documentation

11.9 Cloudwatch

Field Description
boto_profile
string

Boto profile used for the iam client.

region
string

Region of the function, can be any region supported by AWS.

log_retention_policy_in_days
string

Number of days that the functions logs are stored.

11.10 AWS Batch

Field Description
boto_profile
string

Boto profile used for the iam client.

region
string

Region of the function, can be any region supported by AWS.

vcpus
string

The number of vCPUs reserved for the container. Used in the job definition. Default 1

memory
string

The hard limit (in MiB) of memory to present to the container. Used in the job definition.
Default 1024

enable_gpu
string

Request GPU resources for the launched container. Default ‘False’. Values ‘False’,
‘True’

service_role
string

Environment variables passed to the batch container

environment
OSCAR-FDL-
Enviroment

Number of days that the functions logs are stored.

compute_resources
Compute Resources

Parameters that specifies all the resources is going to use.

38 Chapter 11. Function Definition Language (SCAR)

https://docs.oscar.grycap.net/fdl/#envvarsmap
https://docs.oscar.grycap.net/fdl/#envvarsmap

scar Documentation

11.11 Compute Resources

Field Description
security_group_ids
string
ar-
ray

List of the Amazon EC2 security groups associated with instances launched in the compute environment.
REQUIRED when using batch.

desired_v_cpus
string

The desired number of Amazon EC2 vCPUS in the compute environment. Default 0

min_v_cpus
string

The minimum number of Amazon EC2 vCPUs that an environment should maintain. Default 0

max_v_cpus
string

The maximum number of Amazon EC2 vCPUs that an environment should maintain. Default 2

subnets
string
ar-
ray

List of the VPC subnets into which the compute resources are launched. REQUIRED when using batch

instance_types
string
ar-
ray

The instances types that may be launched. You can specify instance families to launch any instance type
within those families. (for example, c5 or p3), or you can specify specific sizes within a family (such as
c5.8xlarge). You can also choose optimal to pick instance types (from the C, M, and R instance families)
on the fly that match the demand of your job queues. Default ‘m3.medium’

instance_role
string

The Amazon ECS instance profile applied to Amazon EC2 instances in a compute environment.

11.11. Compute Resources 39

scar Documentation

40 Chapter 11. Function Definition Language (SCAR)

CHAPTER 12

AWS Batch Integration

AWS Batch allows to efficiently execute batch computing jobs on AWS by dynamically provisioning the required
underlying EC2 instances on which Docker-based jobs are executed. SCAR allows to transparently integrate the
execution of the jobs through AWS Batch. Three execution modes are now available in SCAR:

• lambda: This is the default execution mode. All executions will be run on AWS Lambda.

• lambda-batch: Executions will be run on AWS Lambda. If the default timeout is reached, then the execution is
automatically delegated to AWS Batch.

• batch: Executions will be automatically diverted to AWS Batch.

This way, you can use AWS Lambda as a highly-scalable cache for burts of short computational jobs while longer
executions can be automatically delegated to AWS Batch. The very same programming model is maintained regardless
of the service employed to perform the computation.

12.1 Set up your configuration file

To be able to use AWS Batch, first you need to set up your configuration file, located in ~/.scar/scar.cfg

The variables responsible for batch configuration are:

"batch": {
"boto_profile": "default",
"region": "us-east-1",
"vcpus": 1,
"memory": 1024,
"enable_gpu": false,
"state": "ENABLED",
"type": "MANAGED",
"environment": {
"Variables": {}

},
"compute_resources": {

(continues on next page)

41

https://aws.amazon.com/batch/
https://scar.readthedocs.io/en/latest/prog_model.html
https://aws.amazon.com/batch/

scar Documentation

(continued from previous page)

"security_group_ids": [],
"type": "EC2",
"desired_v_cpus": 0,
"min_v_cpus": 0,
"max_v_cpus": 2,
"subnets": [],
"instance_types": [

"m3.medium"
],
"launch_template_name": "faas-supervisor",
"instance_role": "arn:aws:iam::{account_id}:instance-profile/ecsInstanceRole"

},
"service_role": "arn:aws:iam::{account_id}:role/service-role/AWSBatchServiceRole"

}

Since AWS Batch deploys Amazon EC2 instances, the REQUIRED variables are:

• security_group_ids: The EC2 security group that is associated with the instances launched in the compute
environment. This allows to define the inbound and outbound network rules in order to allow or disallow
TCP/UDP traffic generated from (or received by) the EC2 instance. You can choose the default VPC
security group.

• subnets: The VPC subnet(s) identifier(s) on which the EC2 instances will be deployed. This allows to use
multiple Availability Zones for enhanced fault-tolerance.

The remaining variables have default values that should be enough to manage standard batch jobs. The default fdl file
explains briefly the remaining Batch variables and how are they used.

Additional info about the variables and the different values that can be assigned can be found in the AWS API Docu-
mentation.

12.2 Set up your Batch IAM role

The default IAM role used in the creation of the EC2 for the Batch Compute Environment is
arn:aws:iam::$ACCOUNT_ID:instance-profile/**ecsInstanceRole**. Thus, if you want to provide S3 access to
your Batch jobs you have to specify the corresponding policies in the aforementioned role. If you have a role aleredy
configured, you can set it in the configuration file by changin the variable batch.compute_resources.instance_role.

12.3 Define a job to be executed in batch

To enable this functionality you only need to set the execution mode of the Lambda function to one of the two available
used to create batch jobs (‘lambda-batch’ or ‘batch’) and SCAR will take care of the integration process (before using
this feature make sure you have the correct rights set in your AWS account).

As an example, the following configuration file defines a Lambda function that creates an AWS Batch job to execute
the plants classification example (all the required scripts and example files used in this example can be found there):

cat >> scar-plants.yaml << EOF
functions:

aws:
- lambda:

name: scar-plants
init_script: bootstrap-plants.sh

(continues on next page)

42 Chapter 12. AWS Batch Integration

https://github.com/grycap/scar/blob/master/fdl-example.yaml
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://github.com/grycap/scar/tree/master/examples/plant-classification

scar Documentation

(continued from previous page)

memory: 1024
execution_mode: batch
container:

image: deephdc/deep-oc-plant-classification-theano
input:
- storage_provider: s3

path: scar-plants/input
output:
- storage_provider: s3

path: scar-plants/output
EOF

You can then create the function:

scar init -f scar-plants.yaml

Additionally for this example to run you have to upload the execution script to S3:

scar put -b scar-plants -p plant-classification-run.sh

Once uploaded you have to manually set their access to public so it can be accessed from batch. This has to be done
to deal with the batch limits as it is explained in the next section.

And trigger the execution of the function by uploading a file to be processed to the corresponding folder:

scar put -b scar-plants/input -p daisy.jpg

SCAR automatically creates the compute environment in AWS Batch and submits a job to be executed. Input and
output data files are transparently managed as well according to the programming model.

The CloudWatch logs will reveal the execution of the Lambda function as well as the execution of the AWS Batch
job. Notice that whenever the execution of the AWS Batch job has finished, the EC2 instances will be eventually
terminated. Also, the number of EC2 instances will increase and shrink to handle the incoming number of jobs.

12.4 Combine AWS Lambda and AWS Batch executions

As explained in the section Event-Driven File-Processing Programming Model, if you define an output bucket as the
input bucket of another function, a workflow can be created. By doing this, AWS Batch and AWS Lambda executions
can be combined through S3 events.

An example of this execution can be found in the video process example.

12.5 Limits

When defining an AWS Batch job have in mind that the AWS Batch service has some limits that are lower than the
Lambda service.

For example, the Batch Job definition size is limited to 24KB and the invocation payload in Lambda is limited to 6MB
in synchronous calls and 128KB in asynchronous calls.

To create the AWS Batch job, the Lambda function defines a Job with the payload content included, and sometimes
(i.e. when the script passed as payload is greater than 24KB) the Batch Job definition can fail.

12.4. Combine AWS Lambda and AWS Batch executions 43

https://github.com/grycap/scar/tree/master/examples/video-process
https://docs.aws.amazon.com/batch/latest/userguide/service_limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

scar Documentation

The payload limit can be avoided by redefining the script used and passing the large payload files using other service
(e.g S3 or some bash command like ‘wget’ or ‘curl’ to download the information in execution time). As we did with
the plant classification example, where a bootstrap script was used to download the executed script.

Also, AWS Batch does not allow to override the container entrypoint so containers with an entrypoint defined can not
execute an user script.

12.6 Multinode parallel jobs

You can execute multinode parallel jobs in batch by enabling this mode either in the scar.cfg file or in the configuration
file for the job (functions->aws->batch->multi_node_parallel->enable). You can also set the number of nodes and the
index of the main node. Please take into account that the index of the main node starts from 0 up to the number of
nodes -1.

We included an example of MPI job that can be executed as multinode parallel job, showing a hello world from each
CPU/node available for execution. Both work in Amazon Lambda and Batch single node, you can use the included
configuration files as a starting point. For more details, please check the README.md that comes with the example.

44 Chapter 12. AWS Batch Integration

https://github.com/grycap/scar/blob/master/examples/plant-classification/bootstrap-plants.sh
https://github.com/grycap/scar/blob/master/examples/plant-classification/plant-classification-run.sh
https://github.com/grycap/scar/tree/master/examples/mpi

CHAPTER 13

Event-Driven File-Processing Programming Model

SCAR supports an event-driven programming model suitable for the execution of highly-parallel file-processing ap-
plications that require a customized runtime environment.

The following command:

cat >> darknet.yaml << EOF
functions:

aws:
- lambda:

name: scar-darknet-s3
memory: 2048
init_script: yolo.sh
container:

image: grycap/darknet
input:
- storage_provider: s3

path: scar-darknet/input
output:
- storage_provider: s3

path: scar-darknet/output
EOF

scar init -f darknet.yaml

Creates a Lambda function to execute the shell-script yolo.sh inside a Docker container created out of the grycap/
darknet Docker image stored in Docker Hub.

The following workflow summarises the programming model:

1) The Amazon S3 bucket scar-darknet is created with an input folder inside it if it doesn’t exist.

2) The Lambda function is triggered upon uploading a file into the input folder created.

3) The Lambda function retrieves the file from the Amazon S3 bucket and makes it available for the shell-script
running inside the container in the path $TMP_INPUT_DIR. The $INPUT_FILE_PATH environment variable
will point to the location of the input file.

45

https://github.com/grycap/scar/blob/master/examples/darknet/yolo.sh

scar Documentation

4) The shell-script processes the input file and produces the output (either one or multiple files) in the folder
specified by the $TMP_OUTPUT_DIR global variable.

5) The output files are automatically uploaded by the Lambda function into the output folder created inside of
the scar-darknet bucket.

Many instances of the Lambda function may run concurrently and independently, depending on the files to be pro-
cessed in the S3 bucket. Initial executions of the Lambda may require retrieving the Docker image from Docker Hub
but this will be cached for subsequent invocations, thus speeding up the execution process.

For further information, examples of such application are included in the examples/ffmpeg folder, in order to run the
FFmpeg video codification tool, and in the examples/imagemagick, in order to run the ImageMagick image manipu-
lation tool, both on AWS Lambda.

13.1 More Event-Driven File-Processing thingies

SCAR also supports another way of executing highly-parallel file-processing applications that require a customized
runtime environment.

After creating a function with the configuration file defined in the previous section, you can activate the SCAR event
launcher using the run command like this:

scar run -f darknet.yaml

This command lists the files in the input folder of the scar-darknet bucket and sends the required events (one
per file) to the lambda function.

Note: The input path must be previously created and must contain some files in order to launch the functions. The
bucket could be previously defined and you don’t need to create it with SCAR.

The following workflow summarises the programming model, the differences with the main programming model are
in bold:

1) The folder ‘input’ inside the amazon S3 bucket ‘scar-darknet’ will be searched for files.

2) The Lambda function is triggered once for each file found in the folder. The first execution is of type
‘request-response’ and the rest are ‘asynchronous’ (this is done to ensure the caching and accelerate the
subsequent executions).

3) The Lambda function retrieves the file from the Amazon S3 bucket and makes it available for the shell-script
running inside the container. The $INPUT_FILE_PATH environment variable will point to the location of the
input file.

4) The shell-script processes the input file and produces the output (either one or multiple files) in the path specified
by the $TMP_OUTPUT_DIR global variable.

5) The output files are automatically uploaded by the Lambda function into the output folder of
scar-darknet bucket.

46 Chapter 13. Event-Driven File-Processing Programming Model

https://github.com/grycap/scar/tree/master/examples/ffmpeg
https://ffmpeg.org/
https://github.com/grycap/scar/tree/master/examples/imagemagick
https://www.imagemagick.org

scar Documentation

13.2 Function Definition Language (FDL)

In the last update of SCAR, the language used to define functions was improved and now several functions with
their complete configurations can be defined in one configuration file. Additionally, differente storage providers with
different configurations can be used.

A complete working example of this functionality can be found here.

In this example two functions are created, one with Batch delegation to process videos and the other in Lambda to
process the generated images. The functions are connected by their linked buckets as it can be seen in the configuration
file:

cat >> scar-video-process.yaml << EOF
functions:

(continues on next page)

13.2. Function Definition Language (FDL) 47

https://github.com/grycap/scar/tree/master/examples/video-process

scar Documentation

(continued from previous page)

aws:
- lambda:

name: scar-batch-ffmpeg-split
init_script: split-video.sh
execution_mode: batch
container:

image: grycap/ffmpeg
input:
- storage_provider: s3

path: scar-video/input
output:
- storage_provider: s3

path: scar-video/split-images
- lambda:

name: scar-lambda-darknet
init_script: yolo-sample-object-detection.sh
memory: 3008
container:

image: grycap/darknet
input:
- storage_provider: s3

path: scar-video/split-images
output:
- storage_provider: s3

path: scar-video/output
EOF

scar init -f scar-video-process.yaml

Using the common folder split-images these functions can be connected to create a workflow. None of this buck-
ets or folders must be previously created for this to work. SCAR manages the creation of the required buckets/folders.

To launch this workflow you only need to upload a video to the folder input of the scar-video bucket, with the
command:

scar put -b scar-video/input -p seq1.avi

This will launch first, the splitting function that will create 68 images (one per each second of the video), and second,
the 68 Lambda functions that process the created images and analyze them.

48 Chapter 13. Event-Driven File-Processing Programming Model

CHAPTER 14

Local Testing

14.1 Testing of the Docker images via udocker

You can test locally if the Docker image will be able to run in AWS Lambda by means of udocker (available in the
lambda directory) and taking into account the following limitations:

• udocker cannot run on macOS. Use a Linux box instead.

• Images based in Alpine will not work.

Procedure for testing:

0. (Optional) Define an alias for easier usage:

alias udocker=`pwd`/lambda/udocker

1) Pull the image from Docker Hub into udocker:

udocker pull grycap/cowsay

2) Create the container:

udocker create --name=ucontainer grycap/cowsay

3) Change the execution mode to Fakechroot:

udocker setup --execmode=F1 ucontainer

4) Execute the container:

udocker run ucontainer

5) (Optional) Get a shell into the container:

udocker run ucontainer /bin/sh

49

scar Documentation

Further information is available in the udocker documentation:

udocker help

50 Chapter 14. Local Testing

CHAPTER 15

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other

51

http://www.apache.org/licenses/

scar Documentation

modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

52 Chapter 15. License

scar Documentation

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t in-
clude the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright 2018 GRyCAP - I3M - UPV

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

53

http://www.apache.org/licenses/LICENSE-2.0

scar Documentation

express or implied. See the License for the specific language governing permissions and limitations under
the License.

54 Chapter 15. License

CHAPTER 16

Need Help?

If you have any trouble please email products@grycap.upv.es

55

mailto:products@grycap.upv.es

	About SCAR
	Approach
	Limitations
	Installation
	Install using pip3
	Clone the Github Repository
	Extra dependencies

	SCAR container
	Building the SCAR image

	Configuration
	IAM User Credentials
	IAM Role
	Configuration file

	Basic Usage
	Using a configuration file (recommended)
	Using CLI configuration (old school)

	Advanced Usage
	Define a shell-script for each invocation of the Lambda function
	Executing an user-defined shell-script
	Passing environment variables
	Executing custom commands and arguments
	Obtaining a JSON Output
	Upload docker image files using an S3 bucket
	Upload ‘slim’ docker image files in the payload
	Setting a specific VPC

	Using Lambda Image Environment
	Use alpine based images
	Use already prepared ECR images
	Do not delete ECR image on function deletion
	ARM64 support
	EFS support

	API Gateway Integration
	Define an HTTP endpoint
	CURL Invocation
	GET Request
	POST Request

	Function Definition Language (SCAR)
	Top level parameters
	Functions
	AWS Elements
	Lambda
	Container
	Supervisor
	IAM
	API Gateway
	Cloudwatch
	AWS Batch
	Compute Resources

	AWS Batch Integration
	Set up your configuration file
	Set up your Batch IAM role
	Define a job to be executed in batch
	Combine AWS Lambda and AWS Batch executions
	Limits
	Multinode parallel jobs

	Event-Driven File-Processing Programming Model
	More Event-Driven File-Processing thingies
	Function Definition Language (FDL)

	Local Testing
	Testing of the Docker images via udocker

	License
	Need Help?

